Barrie, C., & Ho, J. (2021). academictwitteR: An r package to access the twitter academic research product track v2 API endpoint.
Journal of Open Source Software,
6(62), 3272.
https://doi.org/10.21105/joss.03272
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3, 9931022.
Chan, C., & Sältzer, M. (2020). Oolong: An r package for validating automated content analysis tools.
Journal of Open Source Software,
5(55), 2461.
https://doi.org/10.21105/joss.02461
Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., & Blei, D. (2009). Reading tea leaves: How humans interpret topic models. 32, 288–296.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019).
BERT: Pre-training of deep bidirectional transformers for language understanding (J. Burstein, C. Doran, & T. Solorio, Eds.; p. 41714186). Association for Computational Linguistics.
https://doi.org/10.18653/v1/N19-1423
Le, Q., & Mikolov, T. (2014).
Distributed representations of sentences and documents (E. P. Xing & T. Jebara, Eds.; Vol. 32, p. 11881196). PMLR.
https://proceedings.mlr.press/v32/le14.html
Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, B., Heyer, G., Reber, U., Häussler, T., Schmid-Petri, H., & Adam, S. (2018). Applying LDA Topic Modeling in Communication Research: Toward a Valid and Reliable Methodology.
Communication Methods and Measures,
12(2-3), 93–118.
https://doi.org/10.1080/19312458.2018.1430754
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013).
Distributed representations of words and phrases and their compositionality (C. J. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger, Eds.; Vol. 26). Curran Associates, Inc.
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
Pennington, J., Socher, R., & Manning, C. D. (2014).
Glove: Global vectors for word representation. 15321543.
https://doi.org/10.3115/v1/D14-1162
Roberts, M. E., Stewart, B. M., & Airoldi, E. M. (2016). A model of text for experimentation in the social sciences.
Journal of the American Statistical Association,
111(515), 988–1003.
https://doi.org/f88tzh
Roberts, M. E., Stewart, B. M., & Tingley, D. (2019). stm: An R Package for Structural Topic Models.
Journal of Statistical Software,
91(1), 1–40.
https://doi.org/10.18637/jss.v091.i02
Silge, J., & Robinson, D. (2017). Text mining with r: A tidy approach (First edition). O’Reilly.
Zheng, A., & Casari, A. (2018). Feature engineering for machine learning: Principles and techniques for data scientists (First edition). O’Reilly.
Social Media as 💊, 👹 or 🍩 ?
Discussion about digital disconnection on twitter
Increasing trend towards more conscious use of digital media (devices), including (deliberate) non-use with the aim to restore or improve psychological well-being (among other factors)
Collect all tweets (until 31.12.2022) via Twitter Academic Research Product Track v2 API &
academictwitteR
package (Barrie & Ho, 2021) that mention or discuss digital detox (and similar terms)Dataset for session is a subsample (n = 46670) with only tweets that contain
#digitaldetox
.