Wiederholung & Ausblick

Session 11

11.07.2024

Seminarplan

Sitzung Datum Thema (synchron) Übung (asynchron) Dozent:in
1 18.04.2024 Einführung & Überblick R-Einführung AM & CA
2 📚 Teil 1: Systematic Review R-Einführung AM
3 25.04.2024 Einführung in Systematic Reviews I R-Einführung AM
4 02.05.2024 Einführung in Systematic Reviews II R-Einführung AM
5 09.05.2024 🏖️ Feiertag R-Einführung ED
6 16.05.2024 Automatisierung von SRs & KI-Tools R-Einführung AM
7 23.05.2024 🍻 WiSo-Projekt-Woche R-Einführung CA
8 04.06.2024 🍕 Gastvortrag: Prof. Dr. Emese Domahidi zur Sitzung CA
9 06.06.2024 Automatisierung von SRs & KI-Tools zur Sitzung CA
10 💻 Teil 2: Text as Data & Unsupervised Machine Learning zur Sitzung CA & AM
11 13.06.2024 Introduction to Text as Data zur Sitzung CA & AM
12 20.06.2024 Text processing zur Sitzung CA & AM
1 27.06.2024 Unsupervised Machine Learning I zur Sitzung AM & CA
2 04.07.2024 Unsupervised Machine Learning II R-Einführung AM
3 11.07.2024 Recap & Ausblick R-Einführung AM
4 18.07.2024 🏁 Semesterabschluss R-Einführung AM

Agenda

  1. 📋 Besprechung der Übungsaufgaben
  2. Ausblick

📋 Besprechung Übungsaufgaben

Topic Modeling in R: Umsetzung und Validierung

Auswahl des passenden Models

📋 Exercise 1.1: Visualisierung der Themenprävalenz

# Pull tpm with 40 topics
stm_mdl_k40 <- stm_search %>% 
  filter(k == 40) %>% 
  pull(mdl) %>% 
  .[[1]]

# Check
stm_mdl_k40
A topic model with 40 topics, 36650 documents and a 14322 word dictionary.

Identifikation der Top-Terms für jedes Thema

📋 Exercise 1.2: Visualisierung der Themenprävalenz

# Create tidy beta matrix
td_beta <- tidy(
  stm_mdl_k40, 
  method = "frex")

# Create top terms
top_terms <- td_beta %>%
  arrange(beta) %>%
  group_by(topic) %>%
  top_n(7, beta) %>%
  arrange(-beta) %>%
  select(topic, term) %>%
  summarise(terms = list(term)) %>%
  mutate(terms = map(
    terms,
    paste,
    collapse = ", ")) %>% 
  unnest(cols = c(terms))

# Output
top_terms
# A tibble: 40 × 2
   topic terms                                                                  
   <int> <chr>                                                                  
 1     1 care, nursing, healthcare, nurses, professionals, patients, patient    
 2     2 students, school, academic, education, educational, schools, literacy  
 3     3 的, 研究, 和, rs, 在, 了, 性                                           
 4     4 elderly, #x0d, can, review, literature, google, keywords               
 5     5 article, journal, decision, describes, aids, pressure, section         
 6     6 prevalence, countries, among, studies, rates, population, higher       
 7     7 depression, anxiety, psychological, stress, life, symptoms, cancer     
 8     8 people, services, community, service, barriers, participation, support 
 9     9 factors, relationship, positive, studies, associated, behavior, negati…
10    10 b, et, al, r, s, c, d                                                  
# ℹ 30 more rows

Erstellung der Prävalenz-Tabelle für die Themen

📋 Exercise 1.3: Visualisierung der Themenprävalenz

Expand for full code
# Create tidy gamma matrix
td_gamma <- tidy(
  stm_mdl_k40, 
  matrix = "gamma", 
  document_names = names(quanteda_stm$documents)
  )

# Create prevalence
prevalence <- td_gamma %>%
  group_by(topic) %>%
  summarise(gamma = mean(gamma)) %>%
  arrange(desc(gamma)) %>%
  left_join(top_terms, by = "topic") %>%
  mutate(topic = paste0("Topic ",sprintf("%02d", topic)),
         topic = reorder(topic, gamma))

# Output
prevalence %>% 
  gt() %>% 
  fmt_number(
    columns = vars(gamma), 
    decimals = 2) %>% 
  gtExtras::gt_theme_538()
topic gamma terms
Topic 16 0.09 research, review, literature, future, findings, systematic, studies
Topic 19 0.07 studies, included, review, quality, evidence, data, systematic
Topic 38 0.05 articles, search, science, databases, review, systematic, criteria
Topic 39 0.04 study, research, literature, analysis, used, results, method
Topic 09 0.04 factors, relationship, positive, studies, associated, behavior, negative
Topic 25 0.04 learning, education, students, teaching, teachers, skills, higher
Topic 29 0.04 cultural, change, policy, political, human, identity, different
Topic 35 0.04 interventions, intervention, effectiveness, n, outcomes, effective, studies
Topic 20 0.03 management, tourism, development, public, paper, economic, marketing
Topic 14 0.03 digital, use, information, technology, online, communication, technologies
Topic 34 0.03 effect, effects, meta-analysis, p, ptsd, ci, significant
Topic 30 0.03 disorders, disorder, suicide, eating, risk, suicidal, psychiatric
Topic 33 0.03 physical, cognitive, activity, studies, body, exercise, weight
Topic 28 0.03 sleep, ci, meta-analysis, risk, studies, pooled, p
Topic 21 0.03 treatment, therapy, trials, patients, music, pain, controlled
Topic 18 0.03 measures, assessment, used, tools, measurement, instruments, measure
Topic 32 0.03 health, mental, stigma, problems, wellbeing, outcomes, review
Topic 06 0.02 prevalence, countries, among, studies, rates, population, higher
Topic 08 0.02 people, services, community, service, barriers, participation, support
Topic 15 0.02 reviews, outcomes, reporting, systematic, outcome, items, preferred
Topic 13 0.02 family, support, resilience, experiences, caregivers, parents, parental
Topic 07 0.02 depression, anxiety, psychological, stress, life, symptoms, cancer
Topic 17 0.02 children, adolescents, language, development, early, child, skills
Topic 01 0.02 care, nursing, healthcare, nurses, professionals, patients, patient
Topic 23 0.02 social, media, older, adults, use, loneliness, people
Topic 37 0.02 training, programs, work, program, professional, skills, workplace
Topic 36 0.02 literature, history, american, black, book, literary, historical
Topic 24 0.02 violence, women, abuse, sexual, ipv, child, trauma
Topic 26 0.02 covid-19, pandemic, vaccine, vaccination, health, acceptance, disease
Topic 27 0.02 use, gender, sexual, substance, alcohol, sex, men
Topic 02 0.02 students, school, academic, education, educational, schools, literacy
Topic 31 0.02 environment, environmental, urban, travel, physical, transport, safety
Topic 40 0.01 authors, interest, information, group, studies, case, term
Topic 12 0.01 crime, review, police, et, al, studies, may
Topic 11 0.01 university, author, papers, college, search, review, share
Topic 04 0.01 elderly, #x0d, can, review, literature, google, keywords
Topic 10 0.01 b, et, al, r, s, c, d
Topic 05 0.00 article, journal, decision, describes, aids, pressure, section
Topic 22 0.00 de, la, y, en, los, el, se
Topic 03 0.00 的, 研究, 和, rs, 在, 了, 性

Schätzung der Meta-Effekte

📋 Exercise 2.1: Einfluss der Metadaten

# Create data
effects_k40 <- estimateEffect(
    1:40 ~ publication_year_fct + field,
    stm_mdl_k40,
    meta = quanteda_stm$meta)
# Filter effect data
effects_tidy <- effects_k40 %>% 
    tidy() %>% 
    filter(
        term != "(Intercept)",
        term == "fieldSocial Sciences") %>% 
        select(-term)

# Check transformation
effects_tidy %>% head()
# A tibble: 6 × 5
  topic  estimate std.error statistic  p.value
  <int>     <dbl>     <dbl>     <dbl>    <dbl>
1     1 -0.00790   0.000834     -9.48 2.80e-21
2     2  0.0108    0.000752     14.4  6.20e-47
3     3 -0.000484  0.000302     -1.60 1.10e- 1
4     4  0.00495   0.000871      5.69 1.31e- 8
5     5  0.00334   0.000259     12.9  5.63e-38
6     6  0.00516   0.000800      6.45 1.14e-10

Untersuchung der Effekte

📋 Exercise 2.2: Einfluss der Metadaten

Expand for full code
# Explore effects (table outpu)
effects_tidy %>% 
    arrange(-estimate) %>% 
    slice_head(n = 10) %>%
    gt() %>% 
    tab_header(
      title = "Top 10 Social Science Topics"
    ) %>% 
    fmt_number(
      columns = -c(topic),
      decimals = 3
    ) %>% 
    data_color(
       columns = estimate,
    method = "numeric",
    palette = "viridis"
    ) %>% 
    gtExtras::gt_theme_538()
Top 10 Social Science Topics
topic estimate std.error statistic p.value
20 0.053 0.001 41.648 0.000
39 0.042 0.001 45.244 0.000
29 0.038 0.001 34.952 0.000
16 0.037 0.001 28.906 0.000
25 0.036 0.001 25.025 0.000
36 0.022 0.001 22.791 0.000
14 0.021 0.001 17.720 0.000
23 0.013 0.001 19.793 0.000
8 0.012 0.001 14.624 0.000
37 0.012 0.001 14.953 0.000

Benennung des Themas k = 20

📋 Exercise 3.1: Einzelthema im Fokus

# Create topic label
stm_mdl_k40 %>% labelTopics(topic = 20)
Topic 20 Top Words:
     Highest Prob: management, tourism, development, public, paper, economic, marketing 
     FREX: tourism, marketing, consumer, halal, sustainable, disaster, economy 
     Lift: hotel, mega-events, tourism, post-disaster, smes, tourist, b2b 
     Score: tourism, marketing, halal, business, governance, sustainable, disaster 


✍️ Wie würdet Ihr das Thema benennen und warum?

Verteilungsparameter von Thema 20

📋 Exercise 3.3: Einzelthema im Fokus

# Create distribution parameters
gamma_export %>% 
  filter(topic == 20) %>%
  select(gamma, relevance_score, cited_by_count) %>% 
  datawizard::describe_distribution()
Variable        |  Mean |    SD |   IQR |          Range | Skewness | Kurtosis
------------------------------------------------------------------------------
gamma           |  0.37 |  0.13 |  0.17 |   [0.12, 0.87] |     0.74 |     0.43
relevance_score | 32.55 | 40.35 | 36.74 | [2.01, 402.59] |     3.07 |    14.76
cited_by_count  | 13.54 | 50.51 |  7.00 | [0.00, 948.00] |    10.41 |   143.55

Variable        |    n | n_Missing
----------------------------------
gamma           | 1477 |         0
relevance_score | 1477 |         0
cited_by_count  | 1477 |         0


Fragen:
  • Anzahl der Abstracts von Thema 20?
  • Durchschnittlicher Relevace Score?
  • Durchschnittliche Zitationen?
  • Anzahl der Zitationen des am meisten zitierten Dokuments?

Top-Dokumente des Themas

📋 Exercise 3.4: Einzelthema im Fokus

Expand for full code
# Identify top documents for topic 20
top_docs_k20 <- gamma_export %>% 
  filter(stm_topic == "Topic 20") %>%
  arrange(-gamma) %>%
  select(title, so, gamma, type, ab) %>%
  slice_head(n = 5) 

# Creae output
top_docs_k20 %>% 
  gt() %>% 
  fmt_number(
    columns = c(gamma), 
    decimals = 2) %>% 
  gtExtras::gt_theme_538()
title so gamma type ab
Literature Review of Overseas Tourism Destination Brand Research Journal of Chongqing Technology and Business University 0.87 article Applying brand theory to the study on tourism destination has been always hot issues for overseas scholars since 1990s.Tourism destination branding management is a significant marketing tool which can bring about effective identification internally,achieving differentiation with external competitors.Systematically reviewing and analyzing recent overseas tourism destination brand literatures,this paper makes conclusion and evaluation of the tourism destination brand construction,branding,brand stakeholders,brand operation,branding performance evaluation to provide reference for domestic tourism destination brand research and management.
Natural Disasters in Colombia and Their Impact on the Food Security of the Affected Population. a Quick Review of the Literature. Social Science Research Network 0.85 article Natural disasters in Colombia significantly impact multiple domains of the affected population, including food security. Those events can cause food production and distribution interruptions, leading to scarcity and increased prices. Additionally, they can damage infrastructure and limit the communities' ability to access food. Food assistance during disasters is crucial to ensuring food security. The former is crucial for human survival and development, and entities responsible for risk management and food assistance play a fundamental role in protecting populations affected by natural disasters. Entities responsible for risk management in Colombia, such as the National Unit for Disaster Risk Management (UNGRD) and the Departmental and Municipal Risk Management Councils, coordinate efforts to provide food assistance and other basic needs. The Colombia Food Bank also plays an essential role in responding to food emergencies as a first responder. In this article, we investigate some of the leading natural disasters that Colombia has suffered in recent years and how these events have affected different communities. Likewise, we explore how the response has been made from the risk management framework, highlighting food assistance.
Government Responsibility as the Main Stakeholder in Tourism Development With Collaboration Approach: Literature Review on Heritage Tourism NA 0.84 article currently, the economic growth of some countries is a contribution by the vast development of the tourism sector, and one of the potential destinations is heritage motivation.More than fifty-three of previous study founds five elements that associated with Heritage Tourism Development, which are four elements influencing directly and one element is impact after development as an outcome.The study is focusing on stakeholders responsibility which led by government to do the development of heritage tourism.Barriers of policies and low attention to strategic plants and policies are an influencer to the obstacles because of less attention from the leader.Collaboration approach helped government to control the system in heritage tourism process.
Business Strategy in Management Perspective: A Literature Review Indonesian Journal of Economic & Management Sciences 0.83 article Business development in the world has entered the era of free markets and broad competition, not only in small areas but also in large areas. Efforts made by a company to win the market are by providing competitive advantages, analyzing competitors, and implementing effective and efficient marketing strategies
A Literature Review on Structural Reform of Agricultural Supply Side NA 0.82 article The structural reform of the agricultural supply side is the major deployment of the "No. 1 document" on agriculture, not only for the direction of agricultural industry development, but also for the agricultural industry structure optimization adjustment to play a needle "tonic", also engaged in agricultural economic research experts and scholars Correct future and long-term research direction to play a "heading" role.This paper summarizes the policy of "structural reform of agricultural supply side", which is related to the optimization and upgrading of agricultural industry structure, the cultivation of agricultural enterprises, the integration of agriculture, the development strategy of agricultural brand, the innovation of agricultural technology, "Rural land management system reform", "agricultural development policy" and other research results.

Ausblick

Large Language Models (LLMs) & bibliometrix in R

Get up and running with LLMs

Run LLMs locally with Ollama

  • open-source project that serves as a powerful and user-friendly platform for running LLMs on your local machine.
  • bridge between the complexities of LLM technology and the desire for an accessible and customizable AI experience.
  • provides access to a diverse and continuously expanding library of pre-trained LLM models (e.g.Llama 3, Phi 3, Mistral, Gemma 2)

R-Wrapper for Ollama API

Run local LLMs in R with rollama (Gruber & Weber, 2024)

  • the goal of rollama is to wrap the Ollama API, which allows you to run different LLMs locally and create an experience similar to ChatGPT/OpenAI’s API.

Chat with a LLM via R

Demonstration on how to use a local LLM with rollama in R

demo_1_llama3 <- rollama::query(
    "Why is the sky blue?",
    model = "llama3"
)

glue::glue(demo_1_llama3$message$content)
demo_1_mistral <- rollama::query(
    "Why is the sky blue?",
    model = "mistral"
)

glue::glue(demo_1_mistral$message$content)

Choose your model wisely!

Compare outputs of different versions of Llama model

demo_2_llama2 <- rollama::query(
    "What is the longest five letter word in english?",
    model = "llama2"
)

glue::glue(demo_2_llama2$message$content)
demo_2_llama3 <- rollama::query(
     "What is the longest five letter word in english?",
    model = "llama3"
)

glue::glue(demo_2_llama3$message$content)

Choose your model wisely!

Models differ in their suffistication and performance

demo_3_llama3 <- rollama::query(
    "Is 9677 a prime number?",
    model = "llama3"
)

glue::glue(demo_3_llama3$message$content)
demo_3_mistral <- rollama::query(
    "Is 9677 a prime number?",
    model = "mistral"
)

glue::glue(demo_3_mistral$message$content)

Eigene Funktion zur Themennamensgebung

Einsatz von LLM im Kontext von Topic Modeling

create_ollama_labels <- function(
  data, topic = "topic", terms = "terms", docs, 
  ollama_model = "llama3", 
  output_seed = 42, output_temperature = 0.8, output_top_k = 40, output_top_p = 0.9) {
  
  # Initialize a list to store labels for each document column
  labels <- setNames(vector("list", length(docs)), docs)
  
  # Loop over each row in the data
  for (i in seq_along(data[[topic]])) {
    
    # Loop over each document column
    for (doc in docs) {
      # Define parameters
      docs_text <- data[[doc]][[i]]
      terms_text <- data[[terms]][[i]]

      # Create query
      q <- tibble::tribble(
        ~role, ~content,
        "user", 
        paste("text: I have a topic that contains the following documents: \n",
        docs_text,
        "\n The topic is described by the following keywords:",
        terms_text,
        "\n Based on the above information, can you please give one short label (no longer than 5 words) for the topic?")
      )
      
      # Generate output
      output <- query(
        q,
        model = ollama_model,
        model_params = list(
            seed = output_seed, 
            temperature = output_temperature,
            top_k = output_top_k, 
            top_p = output_top_p 
      ))
      
      # Initialize the label list for the current doc if it does not exist
      if (is.null(labels[[doc]])) {
        labels[[doc]] <- vector("character", nrow(data))
      }
      
      # Store answer
      labels[[doc]][i] <- pluck(output, "message", "content")
    }
  }
  
  # Combine the labels with the original data
  for (doc in docs) {
    data[[paste0("label_", doc)]] <- labels[[doc]]
  }
  
  return(data)
}

Erstellung der Themennamen

Anwendung der Funktion auf die Daten

topiclabels_llama3 <- create_ollama_labels(
    data = tpm_label_base,
    ollama_model = "llama3",
    docs = c("docs_all")) 

topiclabels_mistral <- create_ollama_labels(
    data = tpm_label_base,
    ollama_model = "mistral",
    docs = c("docs_all"))
topiclabels <- topiclabels_llama3 %>% 
    left_join(topiclabels_mistral %>% select(topic, label_docs_all), by = join_by("topic")) %>% 
    janitor::clean_names() %>% 
    select(topic, starts_with("label_docs_all_")) %>% 
    rename(
        label_llama3 = label_docs_all_x, 
        label_mistral = label_docs_all_y
    ) 

Validieren, validieren, validieren!

Überprüfung und Vergleich der mit LLMs generierten Themennamen

topiclabels %>% 
    gt() %>% 
    gtExtras::gt_theme_538()
topic label_llama3 label_mistral
1 Nursing Professional Practice Issues Nursing Safety & Incivility
2 "Education Policy and School Performance" "School Decision-making Impact"
3 "Factors of Hope in Cancer" "Empirical Studies on Hope in Cancer Patients"
4 "Psychological Interventions in Tuberculosis" "Psychological Interventions for TB Patients" For the cancer-related topic: "Acupressure for Chemo Nausea Reduction"
5 "Corrected Research Article References" Corrected Research Articles with Errors
6 "Global Health Prevalence Studies" "Global Suicidality Prevalence" For Brazil data: "Brazil HIV Prevalence Trends"
7 Here are a few options: * "Mental Health and Cancer" * "Stress and Anxiety Management" * "Cancer Patient Mental Wellbeing" * "Quality of Life Improvement" Based on the text, I would suggest: **"Cancer-Related Stress Management"** Mindfulness & Mental Health in Cancer Patients
8 "Disability and Inclusive Service Provision" "Barriers to Transgender Participation in Disability Services"
9 "Emotions and Personality Traits in Sport" "Emotion Regulation & Dominance"
10 "Karate Attack Velocity Study" "Karate Attack Velocity"
11 Based on the provided text, I would suggest a short label for the topic: "Higher Education Peer Education" Let me know if this fits your requirements or if you need further assistance! Peer Education Reviews in Higher Ed
12 Criminal Justice and Community Policing "Community Policing & Gang Crime"
13 Family Caregiver Experiences "Dyadic Caregiving Impact"
14 "Digital Technologies and Privacy Concerns" Deep Fake & Info Detection Technologies
15 "Core Outcome Set Development" "Core Outcomes in Women's Health Reviews"
16 "Research Frameworks and Methodologies" "Relational Negotiation Research"
17 Child Language Development and Disorders "Pragmatic Language Development in ASD and DLD"
18 "Instrument Validity and Reliability" "Psychometric Validation of Thriving Scales"
19 Systematic Review Protocols "Yoga Barriers & Facilitators Review" for the first text, "Ethnic Mortality Systematic Review" for the second, and "RI & Cognition Systematic Review" for the third.
20 Here are a few options: * Tourism and Destination Management * Marketing in Tourism Industry * Sustainable Tourism Development * Disaster Risk Management Based on the keywords provided, I would suggest the following short label: **Tourism Destination Management** This label captures the essence of the topics discussed, which include tourism destination branding, marketing, consumer behavior, sustainable development, disaster risk management, and more. "Tourism Development Strategies"
21 "Alternative Therapies for Mental Health" "Alternative Therapies for Insomnia and Tics"
22 Mental Health Interventions Systematic Review of ED Self-Help Interventions
23 Based on the abstracts and keywords provided, I would suggest the following short label: "Social Media and Aging Adults" This label captures the main themes of the topic, including social media, aging, and adults, which are present in all three abstracts. Social Media and Loneliness in Older Adults
24 "Violence Against Women and Children" Reproductive Coercion & Sexual Exploitation in Violence Contexts
25 "Teaching and Learning Strategies" Flipped Learning & Active Pedagogy
26 "Covid-19 Vaccine Acceptance and Hesitancy" "COVID-19 Vaccine Hesitancy"
27 "Substance Abuse and Risk Behaviors" "Transgender HIV Risk Factors"
28 Sleep and Disease Associations "Sleep Duration & Dementia/Heart Disease Risk"
29 "Global Political and Social Dynamics" "Transnational Migration & Remittances"
30 "Suicide and Mental Health Disorders" "Nightmares & Psychiatric Disorders" and "Eating Disorders & Neurodevelopmental Conditions" for the respective topics. For the third topic, a possible label could be "APSD/SSD & DDC Polymorphism".
31 "Driver Vigilance and Safety Research" Dancing Injuries and Travel Trauma
32 Cultural and Social Determinants "Immigrant Mental Health Barriers"
33 "Cognitive Neuroscience of Obesity" Cognitive Control and Weight Regulation
34 "Mental Health Treatment Efficacy" "Distance-delivered PTSD treatment efficacy"
35 Behavioral Interventions Effectiveness "Interventions for Dementia Physical Activity"
36 "Early Medieval Chinese Studies" "Early Medieval Chinese Literature & Philosophy"
37 "Employability and Career Development" "Internship Duration Impact" "Career Women Challenges" "Mentoring in Academia" "Women Faculty Inequities"
38 Systematic Literature Reviews in Health "Socioeconomic Status Indicators in Iran Health Studies" "Radiology Gamification Impact Analysis" "Chronic Exercise Effect on Anxiety Symptoms"
39 "Research in Islamic Banking" "Islamic Banking Performance Analysis"
40 "Gender Bias in Science Funding" "Gender Bias in Astronomy Proposal Reviews"

Tools for bibliometrics & scientometrics

bibliometrix: R package for scinece mapping workflow (Aria & Cuccurullo, 2017)

  • bibliometrix is an open-source tool for quantitative research in scientometrics and bibliometrics that includes all the main bibliometric methods of analysis.
  • With biblioshiny, a shiny web app, bibliometrix has become very easy to use even for those who have no coding skills.

Tools for bibliometrics & scientometrics

bibliometrix: R package for scinece mapping workflow (Aria & Cuccurullo, 2017)

OpenAlex & openalexR 🤝 bibliometrix

Pipeline für die Integration von OpenAlex-Daten in bibliometrix

bibliometrix_data <- review_subsample %>% oa2bibliometrix()
bibliometrix_df <- biblioAnalysis(bibliometrix_data, sep = ";")
bibliometrix_data %>% glimpse
Rows: 36,680
Columns: 60
$ AU                          <chr> "CHRISTIAN WINTHER TOPP;SØREN DINESEN ØSTE…
$ RP                          <chr> "PSYCHIATRIC RESEARCH UNIT, PSYCHIATRIC CE…
$ C1                          <chr> "PSYCHIATRIC RESEARCH UNIT, PSYCHIATRIC CE…
$ AU_UN                       <chr> "REGION ZEALAND;AARHUS UNIVERSITY HOSPITAL…
$ AU_CO                       <chr> "DENMARK;DENMARK;DENMARK;DENMARK", "USA;US…
$ ID                          <chr> "PSYCINFO;SYSTEMATIC REVIEW;PSYCHOLOGY;CLI…
$ id_url                      <chr> "https://openalex.org/W4293003987", "https…
$ title                       <chr> "The WHO-5 Well-Being Index: A Systematic …
$ author                      <list> [<data.frame[4 x 12]>], [<data.frame[2 x …
$ publication_date            <chr> "2015-01-01", "2017-08-28", "2014-01-01", …
$ relevance_score             <dbl> 938.7603, 752.3500, 591.2553, 576.1210, 56…
$ so_id                       <chr> "https://openalex.org/S184803288", "https:…
$ host_organization           <chr> "Karger Publishers", "SAGE Publishing", NA…
$ issn_l                      <chr> "0033-3190", "0739-456X", NA, "2214-7829",…
$ url                         <chr> "https://doi.org/10.1159/000376585", "http…
$ pdf_url                     <chr> "https://www.karger.com/Article/Pdf/376585…
$ license                     <chr> "cc-by-nc", NA, NA, "cc-by", NA, NA, "cc-b…
$ version                     <chr> "publishedVersion", NA, "publishedVersion"…
$ first_page                  <chr> "167", "93", NA, "89", "55", "2150", "e356…
$ last_page                   <chr> "176", "112", NA, "106", "64", "2159", "e3…
$ volume                      <chr> "84", "39", NA, "6", "277", "32", "2", "24…
$ issue                       <chr> "3", "1", NA, NA, NA, "19", "8", NA, "9", …
$ is_oa                       <lgl> TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE…
$ is_oa_anywhere              <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE,…
$ oa_status                   <chr> "hybrid", "green", "bronze", "gold", "bron…
$ oa_url                      <chr> "https://www.karger.com/Article/Pdf/376585…
$ any_repository_has_fulltext <lgl> FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE…
$ language                    <chr> "en", "en", "en", "en", "en", "en", "en", …
$ grants                      <list> NA, NA, NA, <"https://openalex.org/F43203…
$ counts_by_year              <list> [<data.frame[11 x 2]>], [<data.frame[7 x …
$ cited_by_api_url            <chr> "https://api.openalex.org/works?filter=cit…
$ ids                         <list> <"https://openalex.org/W4293003987", "htt…
$ doi                         <chr> "https://doi.org/10.1159/000376585", "http…
$ referenced_works            <list> <"https://openalex.org/W1492518593", "htt…
$ related_works               <list> <"https://openalex.org/W3020194755", "htt…
$ is_paratext                 <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
$ is_retracted                <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, …
$ concepts                    <list> [<data.frame[7 x 5]>], [<data.frame[18 x …
$ topics_i                    <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
$ topics_score                <dbl> 0.9926, 0.9050, 0.9995, 0.9987, 0.9999, 1.…
$ topics_name                 <chr> "field", "field", "field", "field", "field…
$ topics_id                   <chr> "https://openalex.org/fields/32", "https:/…
$ topics_display_name         <chr> "Psychology", "Social Sciences", "Psycholo…
$ publication_year_fct        <fct> 2015, 2017, 2014, 2016, 2020, 2014, 2017, …
$ type_fct                    <fct> article, article, article, article, articl…
$ field                       <fct> Psychology, Social Sciences, Psychology, P…
$ id_oa                       <chr> "W4293003987", "W2750168540", "W1998933811…
$ CR                          <chr> "W1492518593;W1544712724;W1802168796;W1821…
$ TI                          <chr> "THE WHO-5 WELL-BEING INDEX: A SYSTEMATIC …
$ AB                          <chr> "THE 5-ITEM WORLD HEALTH ORGANIZATION WELL…
$ SO                          <chr> "PSYCHOTHERAPY AND PSYCHOSOMATICS", "JOURN…
$ DT                          <chr> "ARTICLE", "ARTICLE", "ARTICLE", "ARTICLE"…
$ DB                          <chr> "OPENALEX", "OPENALEX", "OPENALEX", "OPENA…
$ JI                          <chr> "S184803288", "S200299299", NA, "S42102325…
$ J9                          <chr> "S184803288", "S200299299", NA, "S42102325…
$ PY                          <int> 2015, 2017, 2014, 2016, 2020, 2014, 2017, …
$ TC                          <int> 2657, 1375, 2568, 803, 3664, 1553, 2895, 9…
$ DI                          <chr> "10.1159/000376585", "10.1177/0739456x1772…
$ SR_FULL                     <chr> "CHRISTIAN WINTHER TOPP, 2015, PSYCHOTHERA…
$ SR                          <chr> "CHRISTIAN WINTHER TOPP, 2015, PSYCHOTHERA…
bibliometrix_df %>% glimpse
List of 26
 $ Articles            : int 36680
 $ Authors             : 'table' int [1:106265(1d)] 71 51 38 36 33 28 28 28 28 28 ...
  ..- attr(*, "dimnames")=List of 1
  .. ..$ AU: chr [1:106265] "PIM CUIJPERS" "MARK D. GRIFFITHS" "G. J. MELÉNDEZ‐TORRES" "SEENA FAZEL" ...
 $ AuthorsFrac         :'data.frame':   106265 obs. of  2 variables:
  ..$ Author   : chr [1:106265] "MARK D. GRIFFITHS" "PIM CUIJPERS" "MELOR MD YUNUS" "DAVID P. FARRINGTON" ...
  ..$ Frequency: num [1:106265] 13.47 9.21 8.83 8.67 8.58 ...
 $ FirstAuthors        : chr [1:36680] "CHRISTIAN WINTHER TOPP" "XIAO YU" "JUHO HAMARI" "DANIEL JOHNSON" ...
 $ nAUperPaper         : int [1:36680] 4 2 3 6 11 5 8 4 9 2 ...
 $ Appearances         : int 146925
 $ nAuthors            : int 106265
 $ AuMultiAuthoredArt  : int 102093
 $ AuSingleAuthoredArt : int 4172
 $ MostCitedPapers     :'data.frame':   36680 obs. of  5 variables:
  ..$ Paper         : chr [1:36680] "JIAQI XIONG, 2020, JOURNAL OF AFFECTIVE DISORDERS" "KAREN HUGHES, 2017, \u0098THE \u009cLANCET. PUBLIC HEALTH" "SOFIA PAPPA, 2020, BRAIN, BEHAVIOR, AND IMMUNITY" "CHRISTIAN WINTHER TOPP, 2015, PSYCHOTHERAPY AND PSYCHOSOMATICS" ...
  ..$ DOI           : chr [1:36680] "10.1016/j.jad.2020.08.001" "10.1016/s2468-2667(17)30118-4" "10.1016/j.bbi.2020.05.026" "10.1159/000376585" ...
  ..$ TC            : num [1:36680] 3664 2895 2675 2657 2568 ...
  ..$ TCperYear     : num [1:36680] 733 362 535 266 233 ...
  ..$ NTC           : num [1:36680] 132 56 96.4 47.1 37.5 ...
 $ Years               : num [1:36680] 2015 2017 2014 2016 2020 ...
 $ FirstAffiliation    : chr [1:36680] "REGION ZEALAND" "TEXAS A&M UNIVERSITY" "UNIVERSITY UCINF" "QUEENSLAND UNIVERSITY OF TECHNOLOGY" ...
 $ Affiliations        : 'table' int [1:9702(1d)] 20528 1396 1237 796 732 653 636 538 533 529 ...
  ..- attr(*, "dimnames")=List of 1
  .. ..$ AFF: chr [1:9702] "NA" "KING'S COLLEGE LONDON" "UNIVERSITY COLLEGE LONDON" "UNIVERSITY OF SYDNEY" ...
 $ Aff_frac            :'data.frame':   9702 obs. of  2 variables:
  ..$ Affiliation: chr [1:9702] "NA" "KING'S COLLEGE LONDON" "UNIVERSITY COLLEGE LONDON" "UNIVERSITY OF SYDNEY" ...
  ..$ Frequency  : num [1:9702] 6174 279 245 169 160 ...
 $ CO                  : chr [1:36680] NA "USA" NA "AUSTRALIA" ...
 $ Countries           : 'table' int [1:136(1d)] 3311 2432 1611 1308 1017 962 939 894 854 819 ...
  ..- attr(*, "dimnames")=List of 1
  .. ..$ Tab: chr [1:136] "USA" "AUSTRALIA" "CHINA" "CANADA" ...
 $ CountryCollaboration:'data.frame':   136 obs. of  3 variables:
  ..$ Country: chr [1:136] "USA" "AUSTRALIA" "CHINA" "CANADA" ...
  ..$ SCP    : num [1:136] 2681 1828 1088 937 710 ...
  ..$ MCP    : num [1:136] 630 604 523 371 307 196 278 275 309 205 ...
 $ TotalCitation       : num [1:36680] 2657 1375 2568 803 3664 ...
 $ TCperYear           : num [1:36680] 265.7 171.9 233.5 89.2 732.8 ...
 $ Sources             : 'table' int [1:8443(1d)] 519 438 396 368 366 316 308 243 229 228 ...
  ..- attr(*, "dimnames")=List of 1
  .. ..$ SO: chr [1:8443] "INTERNATIONAL JOURNAL OF ENVIRONMENTAL  RESEARCH AND PUBLIC HEALTH/INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEA"| __truncated__ "PLOS ONE" "FRONTIERS IN PSYCHOLOGY" "BMJ OPEN" ...
 $ DE                  : NULL
 $ ID                  : 'table' int [1:10069(1d)] 25495 22956 13848 13747 11887 10037 9975 9294 8577 7854 ...
  ..- attr(*, "dimnames")=List of 1
  .. ..$ Tab: chr [1:10069] "PSYCHOLOGY" "MEDICINE" "PSYCHIATRY" "MEDLINE" ...
 $ Documents           : 'table' int [1(1d)] 36680
  ..- attr(*, "dimnames")=List of 1
  .. ..$ : chr "ARTICLE     "
 $ IntColl             : num 25
 $ nReferences         : int 934546
 $ DB                  : chr "OPENALEX"
 - attr(*, "class")= chr "bibliometrix"

Zusammenfassung mit summary()

Brief introduction to bibliometrix

bibliometrix_df %>% 
  summary(k = 10, pause = FALSE)


MAIN INFORMATION ABOUT DATA

 Timespan                              2013 : 2023 
 Sources (Journals, Books, etc)        8443 
 Documents                             36680 
 Annual Growth Rate %                  19.49 
 Document Average Age                  5.2 
 Average citations per doc             26.24 
 Average citations per year per doc    4.195 
 References                            934546 
 
DOCUMENT TYPES                     
 article      36680 
 
DOCUMENT CONTENTS
 Keywords Plus (ID)                    10069 
 Author's Keywords (DE)                0 
 
AUTHORS
 Authors                               106265 
 Author Appearances                    146925 
 Authors of single-authored docs       4172 
 
AUTHORS COLLABORATION
 Single-authored docs                  4670 
 Documents per Author                  0.345 
 Co-Authors per Doc                    4.01 
 International co-authorships %        24.98 
 

Annual Scientific Production

 Year    Articles
    2013     1165
    2014     1279
    2015     1549
    2016     1867
    2017     2260
    2018     2545
    2019     3147
    2020     4200
    2021     5626
    2022     6128
    2023     6914

Annual Percentage Growth Rate 19.49 


Most Productive Authors

          Authors        Articles      Authors        Articles Fractionalized
1  PIM CUIJPERS                71 MARK D. GRIFFITHS                     13.47
2  MARK D. GRIFFITHS           51 PIM CUIJPERS                           9.21
3  G. J. MELÉNDEZ‐TORRES       38 MELOR MD YUNUS                         8.83
4  SEENA FAZEL                 36 DAVID P. FARRINGTON                    8.67
5  PAULA WILLIAMSON            33 SHEFALY SHOREY                         8.58
6  DAVID P. FARRINGTON         28 SOHRAB AMIRI                           8.17
7  HELEN SKOUTERIS             28 PHILLIPA HAY                           8.13
8  JAMES THOMAS                28 MASLAWATI MOHAMAD                      8.06
9  JANET TREASURE              28 BART LENART                            8.00
10 PHILLIPA HAY                28 SEENA FAZEL                            7.92


Top manuscripts per citations

                                                                           Paper                                    DOI
1  JIAQI XIONG, 2020, JOURNAL OF AFFECTIVE DISORDERS                                      10.1016/j.jad.2020.08.001    
2  KAREN HUGHES, 2017, \u0098THE \u009cLANCET. PUBLIC HEALTH                              10.1016/s2468-2667(17)30118-4
3  SOFIA PAPPA, 2020, BRAIN, BEHAVIOR, AND IMMUNITY                                       10.1016/j.bbi.2020.05.026    
4  CHRISTIAN WINTHER TOPP, 2015, PSYCHOTHERAPY AND PSYCHOSOMATICS                         10.1159/000376585            
5  JUHO HAMARI, 2014, NA                                                                  10.1109/hicss.2014.377       
6  NADER SALARI, 2020, GLOBALIZATION AND HEALTH                                           10.1186/s12992-020-00589-w   
7  NINA VINDEGAARD, 2020, BRAIN, BEHAVIOR, AND IMMUNITY                                   10.1016/j.bbi.2020.05.048    
8  SARAH CLÉMENT, 2014, PSYCHOLOGICAL MEDICINE                                            10.1017/s0033291714000129    
9  ZACHARY STEEL, 2014, INTERNATIONAL JOURNAL OF EPIDEMIOLOGY                             10.1093/ije/dyu038           
10 MARIA LOADES, 2020, JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY 10.1016/j.jaac.2020.05.009   
     TC TCperYear   NTC
1  3664       733 132.0
2  2895       362  56.0
3  2675       535  96.4
4  2657       266  47.1
5  2568       233  37.5
6  2550       510  91.9
7  2396       479  86.3
8  2080       189  30.4
9  1981       180  28.9
10 1896       379  68.3


Corresponding Author's Countries

          Country Articles   Freq  SCP MCP MCP_Ratio
1  USA                3311 0.1428 2681 630     0.190
2  AUSTRALIA          2432 0.1049 1828 604     0.248
3  CHINA              1611 0.0695 1088 523     0.325
4  CANADA             1308 0.0564  937 371     0.284
5  UNITED KINGDOM     1017 0.0439  710 307     0.302
6  INDONESIA           962 0.0415  766 196     0.204
7  SPAIN               939 0.0405  661 278     0.296
8  GERMANY             894 0.0386  619 275     0.308
9  ITALY               854 0.0368  545 309     0.362
10 MALAYSIA            819 0.0353  614 205     0.250


SCP: Single Country Publications

MCP: Multiple Country Publications


Total Citations per Country

           Country      Total Citations Average Article Citations
1  USA                           112947                    34.113
2  AUSTRALIA                     107366                    44.147
3  UNITED KINGDOM                 59199                    58.209
4  CANADA                         48426                    37.023
5  NETHERLANDS                    38246                    51.131
6  GERMANY                        37808                    42.291
7  CHINA                          36807                    22.847
8  SPAIN                          26761                    28.499
9  ITALY                          26174                    30.649
10 BRAZIL                         15686                    21.576


Most Relevant Sources

                                                                                                                         Sources       
1  INTERNATIONAL JOURNAL OF ENVIRONMENTAL  RESEARCH AND PUBLIC HEALTH/INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH
2  PLOS ONE                                                                                                                            
3  FRONTIERS IN PSYCHOLOGY                                                                                                             
4  BMJ OPEN                                                                                                                            
5  TRAUMA VIOLENCE & ABUSE                                                                                                             
6  SOCIAL SCIENCE RESEARCH NETWORK                                                                                                     
7  JOURNAL OF AFFECTIVE DISORDERS                                                                                                      
8  FRONTIERS IN PSYCHIATRY                                                                                                             
9  JMIR. JOURNAL OF MEDICAL INTERNET RESEARCH/JOURNAL OF MEDICAL INTERNET RESEARCH                                                     
10 PUBMED                                                                                                                              
   Articles
1       519
2       438
3       396
4       368
5       366
6       316
7       308
8       243
9       229
10      228

Top-Authors’ Productivity over the Time

Brief introduction to bibliometrix

top_authors = bibliometrix_data %>% 
  authorProdOverTime(k = 10, graph = TRUE)

Country Scientific Collaboration

Brief introduction to bibliometrix

# Create a country collaboration network
bibliometrix_author_meta <- bibliometrix_data %>% 
  metaTagExtraction(Field = "AU_CO", sep = ";")

country_collab_matrix <- bibliometrix_author_meta %>% 
  biblioNetwork(
    analysis = "collaboration",
    network = "countries", sep = ";")

# Plot the network
networkPlot(
  country_collab_matrix, 
  n = dim(collab_matrix)[1],
  Title = "Country Collaboration",
  type = "circle",
  size = TRUE,
  remove.multiple = FALSE,
  labelsize=0.7,
  cluster = "none") 

Country Scientific Collaboration

Brief introduction to bibliometrix

Expand for full code
net = networkPlot(
  country_collab_matrix, 
  n = 20,
  Title = "Country Collaboration",
  type = "circle",
  size = TRUE,
  remove.multiple = FALSE,
  labelsize=0.7,cluster = "none") 

Keyword co-occurrences

Brief introduction to bibliometrix

keyword_matrix <- bibliometrix_data %>% 
  biblioNetwork(
    analysis = "co-occurrences",
    network = "keywords",
    sep = ";")

# Plot the network
net=keyword_matrix(
  NetMatrix,
  normalize="association",
  weighted=T, n = 30,
  Title = "Keyword Co-occurrences",
  type = "fruchterman",
  size=T,
  edgesize = 5,
  labelsize=0.7)

Keyword co-occurrences

Brief introduction to bibliometrix

Expand for full code
net=networkPlot(
  keyword_matrix,
  normalize="association",
  weighted=T, n = 30,
  Title = "Keyword Co-occurrences",
  type = "fruchterman",
  size=T,
  edgesize = 5,
  labelsize=0.7)

Time for questions

Thank you!

References

Aria, M., & Cuccurullo, C. (2017). bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Gruber, J. B., & Weber, M. (2024). Rollama: An r package for using generative large language models through ollama. https://doi.org/10.48550/ARXIV.2404.07654